Regular Mappings between Dimensions
نویسندگان
چکیده
The notions of Lipschitz and bilipschitz mappings provide classes of mappings connected to the geometry of metric spaces in certain ways. A notion between these two is given by “regular mappings” (reviewed in Section 1), in which some non-bilipschitz behavior is allowed, but with limitations on this, and in a quantitative way. In this paper we look at a class of mappings called (s, t)-regular mappings. These mappings are the same as ordinary regular mappings when s = t, but otherwise they behave somewhat like projections. In particular, they can map sets with Hausdorff dimension s to sets of Hausdorff dimension t. We mostly consider the case of mappings between Euclidean spaces, and show in particular that if f : Rs → Rn is an (s, t)-regular mapping, then for each ball B in Rs there is a linear mapping λ : Rs → Rs−t and a subset E of B of substantial measure such that the pair (f, λ) is bilipschitz on E. We also compare these mappings in comparison with “nonlinear quotient mappings” from [6].
منابع مشابه
Generalized Regular Fuzzy Irresolute Mappings and Their Applications
In this paper, the notion of generalized regular fuzzy irresolute, generalized regular fuzzy irresolute open and generalized regular fuzzy irresolute closed maps in fuzzy topological spaces are introduced and studied. Moreover, some separation axioms and $r$-GRF-separated sets are established. Also, the relations between generalized regular fuzzy continuous maps and generalized regular fuzzy ...
متن کامل$r$-fuzzy regular semi open sets in smooth topological spaces
In this paper, we introduce and study the concept of $r$-fuzzy regular semi open (closed) sets in smooth topological spaces. By using $r$-fuzzy regular semi open (closed) sets, we define a new fuzzy closure operator namely $r$-fuzzy regular semi interior (closure) operator. Also, we introduce fuzzy regular semi continuous and fuzzy regular semi irresolute mappings. Moreover, we investigate the ...
متن کاملFuzzy $e$-regular spaces and strongly $e$-irresolute mappings
The aim of this paper is to introduce fuzzy ($e$, almost) $e^{*}$-regular spaces in $check{S}$ostak's fuzzy topological spaces. Using the $r$-fuzzy $e$-closed sets, we define $r$-($r$-$theta$-, $r$-$etheta$-) $e$-cluster points and their properties. Moreover, we investigate the relations among $r$-($r$-$theta$-, $r$-$etheta$-) $e$-cluster points, $r$-fuzzy ($e$, almost) $e^{*}$-regular spaces a...
متن کاملPartial second-order subdifferentials of -prox-regular functions
Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2 functions. The class of prox-regular functions covers all convex functions, lower C2 functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...
متن کاملFixed point theorems for new J-type mappings in modular spaces
In this paper, we introduce $rho$-altering $J$-type mappings in modular spaces. We prove some fixed point theorems for $rho$-altering and $rho$-altering $J$-type mappings in modular spaces. We also furnish illustrative examples to express relationship between these mappings. As a consequence, the results are applied to the existence of solution of an integral equation arising from an ODE ...
متن کامل